Scale-Invariant Feature Transform Algorithm with Fast Approximate Nearest Neighbor
نویسندگان
چکیده
منابع مشابه
Fast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph
We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملFast and Scalable Outlier Detection with Approximate Nearest Neighbor Ensembles
Popular outlier detection methods require the pairwise comparison of objects to compute the nearest neighbors. This inherently quadratic problem is not scalable to large data sets, making multidimensional outlier detection for big data still an open challenge. Existing approximate neighbor search methods are designed to preserve distances as well as possible. In this article, we present a highl...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملFast Implementation of Scale Invariant Feature Transform Based on CUDA
Scale-invariant feature transform (SIFT) was an algorithm in computer vision to detect and describe local features in images. Due to its excellent performance, SIFT was widely used in many applications, but the implementation of SIFT was complicated and time-consuming. To solve this problem, this paper presented a novel acceleration algorithm for SIFT implementation based on Compute Unified Dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Baghdad Science Journal
سال: 2017
ISSN: 2411-7986,2078-8665
DOI: 10.21123/bsj.14.3.651-661